Bray et al., 2022. “False Peak” creation in the Flynn Creek marine-target impact crater. Meteoritics and Planetary Science. DOI: 10.1111/maps.13822

Singer et al., 2022. Large-scale cryovolcanic resurfacing on Pluto. Nature 13, Article number: 1542

Marusiak et al., (2022). The Detection of Seismicity on Icy Ocean Worlds by Single-Station and Small-Aperture Seismometer Arrays. Earth and Space Science: 9(3):e2021EA002065.

Schenk et al., 2022. Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon, Remote Sens. 13 (2021), 3476, doi:10.3390/rs13173476


Bray (2021). The geological heart of a dwarf planet. Geoscientist: Volume 32. Editor: Amy Whitchurch.

Schenk et al. (2021). Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon. Remote Sensing, vol. 13, issue 17, p. 3476

Maguire et al. (2021). Geophysical constraints on the properties of a subglacial lake in northwest Greenland. The Cryosphere, Volume 15, Issue 7, 2021, pp.3279-3291

Marusiak et al. (2021). The deployment of the Seismometer to Investiagte Ice and Ocean Structure (SIIOS) in Northest Greenland: An analog experiment for icy ocean world seismic deployments. Seismological Research Letters 92(3):2036-2049.

Schenk et al. (2021). Compositional control on impact crater formation on mid-sized planetary bodies: Dawn at Ceres and Vesta, Cassini at Saturn. Icarus, Volume 359, article id. 114343.

Robbins et al. (2021). Depths of Pluto’s and Charon’s craters, and their simple-to-complex transition.  Icarus, Volume 356, article id. 113902.


Buie, M., J. Hofgartner, Bray, V. and E. Lellouch (2020). Future exploration of the Pluto system. pp. 569-586 in: Stern, S. A., Young, L. A., Moore, J. M., Grundy, W. M., Binzel, R. P., (Eds.), Pluto system after New Horizons. University of Arizona Press, Tucson.

Hurford, T. A. et al. (2020). Seismicity on Tidally Active Solid-Surface Worlds. Icarus, Volume 338, article id. 113466.

Spencer et al. (2020). The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science: Vol 367, Issue 6481.

Singer et al. (2020). Pluto and Charon craters and terrain age estimates. In: Stern, S. A., Young, L. A., Moore, J. M., Grundy, W. M., Binzel, R. P., (Eds.), Pluto system after New Horizons. University of Arizona Press, Tucson.

Beddingfield et al. (2020). Landslides on Charon. Icarus, Volume 335, article id. 113383. 


Singer et al. (2019). Impact craters on Pluto and Charon reveal a deficit of small Kuiper belt objects. Science 363, 955.

Rymer et al. (2019). Solar System Ice Giants: Exoplanets in our Backyard. Decadal Survey on Astronomy and Astrophysics, science white papers, no. 176; Bulletin of the American Astronomical Society, Vol. 51, Issue 3, id. 176 (2019)

Stern et al. (2019). Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science: Vol 364, Issue 6441.

Cruikshank, D. P. et al. (2019). Prebiotic Chemistry of Pluto. Astrobiology. doi: 10.1089/ast.2018.1927 

Robbins et al. (2019).  Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. JGR Planets 124(1):155-174.


Bray, V. J., C. Atwood-Stone, C. D. Neish, A. M. McEwen, N. A. Artimeva, A. S. McEwen, J. N. McElwaine (2018). Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater, the Moon. Icarus, 301:26-36.

Moore, J. M et al. (2018). Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU69 (“Ultima Thule”) GRL 45(16):7885-8697.

Robbins et al., (2018). Investigation of Charon’s Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications. JGR Planets 123(1):20-36.

Robbins et al. (2018). Measuring impact crater depth throughout the solar system. MAPS 53(4):583-637.


White, O. L. et al., (2017) Impact crater relaxation on Dione and Tethys and relation to past heat flow, Icarus 288:37-52. 

Robbins et al. (2017). Craters of the Pluto-Charon system. Icarus, Volume 287, p. 187-206.


Atwood-Stone, C., V. J. Bray, A. S. McEwen (2016). A new study of crater concentric ridges on the Moon. Icarus 273. DOI: 10.1016/j.icarus.2016.03.012.

Nimmo et al., (2016). Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature, Volume 540, Issue 7631, pp. 94-96 (2016).

McKinnon et al. (2016) ​Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour, Nature 534(7605):82-85

Gladstone, G. Randall et al. (2016) The atmosphere of Pluto as observed by New Horizons. Science Vol. 351, Issue 6279.

Bagenal, F. et al. (2016) Pluto’ interaction with its space environment: Solar wind, energetic particles, and dust. Science Vol. 351, Issue 6279.

Weaver, H. A. et al. (2016) The small satellites of Pluto as observed by New Horizons. Science, Vol. 351, Issue 6279.

Neish et al., (2016). Fluvial erosion as a mechanism for crater modification on Titan. Icarus, Volume 270, p. 114-129

Moore, Jeffrey M et al., (2016). The geology of Pluto and Charon through the eyes of New Horizons. Science Vol. 351, Issue 6279, pp. 1284-1293.

Grundy et al. (2016). The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature, Volume 539, Issue 7627, pp. 65-68


Bray, V. J. and Schenk, P. M. (2015). Pristine Crater Morphology on Pluto – Expectations for New Horizons.  Icarus New Horizons special edition 246: 156-164.

Bray, V. J. et al. (2015). Seven invited chapters (central peak crater, peak-ring crater, central pit crater, crater wall, crater rim, canali, impact structure) In: Hargitai H, Kereszturi A (eds): Encyclopedia of planetary landforms and other surface features. Springer. ISBN 978-1-4614-3133-6. 2354 pages.

Ding, N., V. J. Bray, A. S. McEwen, S. S. Sutton, C. H. Okubo, M. Chojnacki, L. L. Tornabene (2015). The central uplift of Ritchey crater, Mars. Icarus 252:255-270.

Moore, J. M., Howard, A. D., Schenk, P. M., McKinnon, W. B., Pappalardo, R. T., Ewing, R. C., Bierhaus, E. B., Bray, V. J. and Spencer, J. R. (2015). Geology before Pluto:  pre-New Horizons encounter considerations. Icarus New Horizons special edition 246: 65-81.

Stern, A. S. and the New Horizons Team (2015). The Pluto system: Initial results from its exploration by New Horizons.  Science, Vol. 350, Issue 6258.


Bray, V. J., G. S. Collins, J. V. Morgan,  H. J. Melosh and P. M. Schenk (2014). Hydrocode simulation of Ganymede and Europa cratering trends – How thick is Europa’s crust?. Icarus 231:394-406.

Neish, C. D., J. Maddedn, L. M. Carter, B. R. Hawke, T. Giguere, V. J. Bray, G. R. Osinski, J. T. S. Cahill (2014). Global distribution of lunar impact melt flows. Icarus 239:105-117.


Neish. C. D., R. Kirk, R. Lorenz, Bray, V. J., P. Schenk, B. Stiles, E. Turtle, K. Mitchell, A. Hayes.(2013) Topography of Craters on Titan. Icarus 223(1):82-90. 


Bray, V. J., C. Atwood-Stone, and A. S. McEwen (2012), Investigating the transition from central peak to peak-ring basins using central feature volume measurements from the Global Lunar DTM 100m, Geophys. Res. Lett. 39:L21201. 

Bray, V. J., P. M. Schenk,H. J. Melosh, J. V. Morgan, G. S. Collins. Ganymede crater dimensions – implications for peak and pit formation and development. (2012) Icarus, 217:115-129.

Elder, C. M., V. J. Bray, H. J. Melosh (2012). The theoretical plausibility of central pit formation via melt drainage. Icarus 221:831–843.

Tornabene, L. L., G. R. Osinski, A. S. McEwen, J. M. Boyce, V. J. Bray, C. M. Caudill, J. A. Grant, S. Mattson, and P. J. Mouginis-Mark (2012). Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220:348-368.


Bray, V. J., L. L. Tornabene, L. Keszthelyi, A. S. McEwen, B. R. Hawke, T. Giguere, S. Kattenhorn, W. Garry, B. Rizk, C. Caudill, L. R. Gaddis, C. van der Bogert and the LROC Team (2010). New insight into lunar impact melt mobility from the LRO Camera. Geophys. Res. Lett. 37, 21202.

Banks, M. E., Bryne, S., Galla, K. G. , Murray, B. C., McEwen, A. S., Bray, V. J., Fishbaugh, K. E., Dundas, C. M., Herkenhoff, K. E., Murray, B. C., and the HiRISE Team (2010), Crater Population and Resurfacing of the Martian North Polar Layered Deposits, Journal of Geophysical Research 115. doi:10.1029/2009JE003523.

Reufer, A., N. Thomas, W. Benz, S. Byrne, V. Bray, C. Dundas and M. Searls (2010). Models of high velocity impacts into dust-covered ice: Application to Martian northern lowlands. Planetary and Space Science, 58 (10):1160-1168.

Dundas , C. M., L. P. Keszthelyi, V. J. Bray, and A. S. McEwen (2010), Role of material properties in the cratering record of young platy‐ridged lava on Mars, Geophys. Res. Lett., 37, L12203, doi:10.1029/2010GL042869.


Bray, V. J., (2009). Impact Crater Formation on the Icy Galilean Satellites. Ph. D. Thesis, Imperial College London, United Kingdom. 


Bray, V. J., G. S. Collins, J. V. Morgan and P. M. Schenk (2008). The Effect of Target Properties on Crater Morphology: Comparison of Central Peak Craters on the Moon and Ganymede, Meteoritics and Planetary Science, Vol. 43, No. 12, pp. 1979-1992.


Bray V. J., D. B. J. Bussey, R. C. Ghail, A. P. Jones, K. T. Pickering (2007), Meander geometry of Venusian canali: Constraints on flow regime and formation time, J. Geophys. Res., 112, E04S05, doi:10.1029/2006JE002785

Waltham, D., K. T. Pickering, and V. J. Bray (2007), Particulate gravity currents on Venus, J. Geophys. Res., 113, E02012, doi:10.1029/2007JE002913.


Contact Information:

vjbray AT
+1 (520) 621-1967

Lunar and Planetary Laboratory, 1629 E University Blvd, Tucson, AZ 85721, USA

Please note that email is the best method to reach me during the dumpster fire of 2020!

%d bloggers like this: